TMS: An Update with Practical Implications for the Clinician

Jon W. Draud, MD, MS
Clinical Professor of Psychiatry
University of Tennessee College of Medicine
Memphis, Tennessee
Medical Director of Psychiatry
Trust Point Psychiatric Hospital and
St. Thomas Rutherford Hospital
Nashville, Tennessee
Co-Owner and Co-Founder South East TMS
Alliance
Co-Owner and Co-Founder Draud Sudbury
Psychiatric Solutions
Nashville, Tennessee

TMS Background and Treatment-Resistant Depression

Main Brain Stimulation Techniques
(partial listing)

- ECT
- FEAST
- rTMS
- Brainsway, Magstim, Neuronetics, Neurelave, Neosdm, Neosync
- DBS – Parkinson’s disease
- RET
- Epidual cortical stimulation
- VNS – Epilepsy and Depression
- MST
- TENS
- CES
- EPI-fMRI
- Transcranial pulsed ultrasound

FDA Approved

- Not FDA Approved

Impact of Persistent Depression

- The impact on health resource use is profound
 - Excess health care visits are for medical evaluation of untreated depression symptoms (eg, chest pain, backache, chronic pain)
 - Excess utilization of healthcare resources overall
 - Increases are evident on both direct and indirect costs

- 30% of depressed patients attempt suicide
 - Nearly half of these complete (> 19,000 suicides/year in the United States)

Major Depression is a Leading Health Risk in the Workplace Setting

Cost Impact of Depression on Associated Illnesses

<table>
<thead>
<tr>
<th>Condition</th>
<th>Annual Medical Costs per Patient without Depression (USD$)</th>
<th>Annual Medical Costs per Patient with Depression (USD$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart failure</td>
<td>2.56</td>
<td>6.74</td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td>3.27</td>
<td>8.46</td>
</tr>
<tr>
<td>Asthma</td>
<td>3.73</td>
<td>10.56</td>
</tr>
<tr>
<td>Migraine</td>
<td>3.82</td>
<td>15.47</td>
</tr>
<tr>
<td>Back pain</td>
<td>11.61</td>
<td>33.25</td>
</tr>
<tr>
<td>Diabetes</td>
<td>13.06</td>
<td>27.16</td>
</tr>
<tr>
<td>Hypertension</td>
<td>13.38</td>
<td>27.16</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>62.40</td>
<td>110.94</td>
</tr>
</tbody>
</table>

FTE = full time equivalent.

STAR*D Study Demonstrates That Current Treatments Have Limited Effectiveness

STAR*D = Sequenced Treatment Alternatives to Relieve Depression; HAM-D = Hamilton Rating Scale for Depression.

Likelihood of Discontinuing Treatment Increases with Each New Medication Attempt

Systemic Drug Side Effects

- Weight Gain
- Constipation
- Headache/Migraine
- Diarrhea
- Abnormal Sphincter Function
- Drowsiness
- Insomnia
- Increased Appetite
- Decreased Libido
- Tremor
- Nervous Anxiety
- Treatment Discontinuation

Relapse during Long-Term Follow-Up

STAR*D Study Results

The higher the level of treatment resistance prior to remission, the faster the relapse in long-term follow-up.

- Level 1 (non-resistant)
- Level 2 (1 prior Tx failure)
- Level 3 (2 prior Tx failures)
- Level 4 (3 prior Tx failures)

MDD

In MDD, some areas of the brain are hypoactive and others are hyperactive.

TMS

- Application of electromagnetic induction described by Michael Faraday in 1839
 - Faraday’s Law: a time-varying magnetic field induces an electric current that runs perpendicular to the time-varying motion of the magnetic field
- Clinical application: pulsed magnetic fields can induce electrical currents in brain tissues and neurons

How Do ECT and TMS Differ?

ECT

- Direction of induced current: Radial
- Current reaches deep structures: Yes
- Anesthesia required: Yes
- Seizure induced: Yes

TMS

- Direction of induced current: Tangential
- Current reaches deep structures: No
- Anesthesia required: No
- Seizure induced: No

Key Take-Aways
- ECT and rTMS vastly differ
- High Frequency rTMS (> 1 Hz) enhances cortical excitability

Mechanism of Action for TMS

Faraday’s Law

Michael Faraday (1797–1867)

Cortex TMS Coil

\[E = -d\Phi/dt \]

“The induced electromotive force in any closed circuit is equal to the time rate of change of the magnetic flux through the circuit”

The Forgotten Half of the Truth

Electricity is the Currency of the Brain

All of synaptic pharmacology simply serves to transmit electrical signals to the next neuron

The Brain is an Electrochemical Organ

TMS Mechanism of Effect

Acute effects of pulsed magnetic fields in the brain:
- Induction of localized electric current
- Depolarization of neurons in superficial cerebral cortex
- Alteration in cerebral blood flow and metabolic activity; neurotransmitter release
- Distant action on connected circuits

TMS Increases Neurogenesis in Hippocampal Dentate Gyrus

Treating the Brain as an Electrochemical Target

- Brain activity can be altered:
 - Chemically (eg, via drugs)
 - Electrically (eg, via TMS)

- Drug action is anatomically diffuse and systemic
- TMS is focused, non-invasive and non-systemic

How Can TMS Affect the Brain?

- Physical property of TMS
 - Pain, noise, placebo
- Electrical fields effects – most likely mechanism
- Magnetic field effects (not electrical)?
 - Highly unlikely but not impossible
- Change in blood brain barrier?
 - Possible – checking with diffusion scanning – assume effects are due to neuronal (glial) excitation and cascade of effects thereafter
- Clinical effects might be neurohormonally mediated (eg, TSH, prefrontal)
- Short-term effects (eg, speech arrest) are likely circuit mediated

TSH = thyroid stimulating hormone.

Biological Effects of TMS

Acute Effects
- Induces electric current
- Depolarizes neurons in superficial cortex
- Leads to local and trans-synaptic changes in brain activity

Example
- Left prefrontal TMS
- 22 depressed individuals
- Activation demonstrated at site of stimulation and also at synaptically connected cortical and subcortical regions

Biological Changes with rTMS in Human Studies

- rTMS produces changes in PFC and paralimbic blood flow with DLPFC stimulation
- Increased output of TSH in association with acute mood change in depression
- Normalization of the DST with rTMS

PFC = prefrontal cortex; DLPFC = dorsolateral PFC; DST = dexamethasone suppression test.
Biological Effects of TMS (continued)

- Chronic Effects
 - Specific outcome is dependent upon stimulation parameters
 - Alteration of monoamine concentrations
 - β-receptor, serotonin-receptor modulation
 - Induction of neurogenesis genes (e.g., BDNF)
 - Plasticity, LTD/LTP effects
 - Local GABA, glutamate effects
 - Stimulation of the DLPFC alters functional activity of the anterior cingulate and deeper limbic regions

How Does TMS Correct the Neurophysiologic Defect in MDD?

- The brain is a distributed network system whose connections are maintained by rhythmic oscillations. Alpha rhythms are responsible for regulating functional connectivity over long distances in the brain
- In MDD, the brain is locked into a state marked by highly resonant low-frequency rhythmic oscillations
 - Normal oscillations: synchronous and asynchronous rhythm
 - Oscillations in MDD: monotonous synchrony
- Goal of TMS is to reset cortical and thalamocortical oscillators, leading to increased variability in network formation
- Successful treatment is marked by increased variability in oscillatory activity

Prefrontal TMS Effects Limbic Blood Flow

Pooled effects of 1 Hz prefrontal TMS in 5 healthy adults, 120% MT, BOLD fMRI, P < .001, cluster P < .05 for display

TMS Affects β-adrenergic and Serotonergic Transmission in Animal Models

Chronic rTMS modulates β-adrenergic receptors in cortex

TMS Affects β-adrenergic and Serotonergic Transmission in Animal Models (continued)

Chronic rTMS (15 Hz, 3.5 s, 10 d, 7 cm coil) reduced 5-HT₃ receptors in cortex

Prefrontal TMS Induces Dopamine Release in Ipsilateral Caudate

15 10 pulse 1s trains @10 Hz, total 450
Declining Amygdala and Prefrontal Activity with Worsening Depression

Could we wake this up with TMS?

Cortical Governance over Limbic Activity

Clinical Safety and Tolerability Considerations

- What's common, what's not...
- No evidence of cognitive sequelae
- Common adverse events
 - Self-limited headache after treatment (~1 in 4)
 - Cutaneous discomfort during stimulation (~1 in 6)
 - Pain during stimulation (~3–5%)
- Risk of seizure
 - 9 cases reported in the world literature with rTMS
 - Self-limited
 - No reported sequelae or progression to seizure disorder
 - No additional cases since inception of 1998 guidelines

Key Take-Aways

- Synaptic pharmacology serves to transmit electrical signals to the next neuron; in clinical practice, rTMS uses pulsed magnetic fields to induce electrical current in brain tissue and neurons
- One goal of rTMS is to reset cortical and thalamocortical oscillators, leading to increased flexibility in network formations
- rTMS modulates monoamines, glutamate, GABA, as well as intracellular plasticity cascades

Initial TMS Antidepressant Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Freq</th>
<th>MT %</th>
<th>Pulsed %</th>
<th># Sess</th>
<th>Total Pulses</th>
<th>% Change</th>
<th>HDSR</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoflich et al, 1993</td>
<td>2</td>
<td>3</td>
<td>105-130</td>
<td>250</td>
<td>10</td>
<td>2500</td>
<td>10.3</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>Kolbinger et al, 1995</td>
<td>15</td>
<td>25</td>
<td>90</td>
<td>290</td>
<td>5</td>
<td>1250</td>
<td>15</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>George et al, 1995</td>
<td>6</td>
<td>20</td>
<td>80</td>
<td>900</td>
<td>5</td>
<td>4000</td>
<td>26</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>Pascual-Leone, 1996</td>
<td>17</td>
<td>10</td>
<td>90</td>
<td>2000</td>
<td>5</td>
<td>10,000</td>
<td>45</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>Epstein et al, 1998</td>
<td>32</td>
<td>10</td>
<td>110</td>
<td>250</td>
<td>5</td>
<td>1250</td>
<td>52</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Figiel et al, 1998</td>
<td>56</td>
<td>10</td>
<td>110</td>
<td>500</td>
<td>5</td>
<td>2500</td>
<td>44.4</td>
<td>1.78</td>
<td></td>
</tr>
</tbody>
</table>

1,2 = randomized, controlled; remainder of studies were open.
Comparative Analysis of Effect Size: TMS Therapy vs Medications

Meta-Analysis of Left DLPFC rTMS

- Included 12 controlled trials (n = 230)
- Mean effect size 0.53 (CI 0.24-0.82)
- Comparable effect to antidepressants
- Would need—at a minimum—20 negative studies to override this result

Cochrane Meta-Analysis

- Included 14 RCTs of rTMS but critiqued the small sample size of rTMS studies generally (Median n = 19, range 6–40 participants) if Klein et al is excluded
- Found benefit for rTMS of the left DLPFC at 2 weeks and for right DLPFC at 1 Hz but...
- Concluded—“there is no strong evidence for benefit from using transcranial magnetic stimulation to treat depression”

Learning to Optimize TMS or Why Cochrane is Definitely Not the Last Word

- RCT of bilateral TMS in TRD
- Sequential slow TMS on the R and fast TMS on the L
- 6-week trial, daily TMS added on to existing medications, N = 50
- Response rate of 44% and remission of 36% observed on MADRS, 52% and 40% respectively on HAM-D-17
- Significantly greater response to active than sham stimulation at 2 weeks and across the full duration of the study
- Better results than citalopram over 12-weeks in the STAR*D outcomes in the same issue of AJP (47% and 30% on MADRS)

Summary of TMS Acute Unipolar Depression Trials

- 3 large prospective RCTs support TMS for treating acute moderately TRD
- Remission rates from 15% to 30% in the double-blind phase, and ≥ 30% in open-label
- Safe, tolerable, but inefficient
- Good clinical adoption
 - 500 Neuronetics machines sold in United States alone
 - App 12 remitters/day in United States alone
- Durability appears good: 90% retention of response at 12 months

Clinical Benefit Varies by Prior Treatment Failure in STAR*D and TMS Therapy

Comparison of Monotherapy Outcomes: Pharmacotherapy vs TMS Therapy

<table>
<thead>
<tr>
<th>Treatment Resistance</th>
<th>TMS Therapy Outcome</th>
<th>Pharmacotherapy Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>No or Limited Prior Rx</td>
<td>27.5%</td>
<td>21.2%</td>
</tr>
<tr>
<td>1 Prior Failure</td>
<td>16.2%</td>
<td>17.7%</td>
</tr>
<tr>
<td>2 Prior Failures</td>
<td>6.9%</td>
<td>8.2%</td>
</tr>
<tr>
<td>3 Prior Failures</td>
<td>6.9%</td>
<td>8.2%</td>
</tr>
</tbody>
</table>

TMS Therapy Demonstrates a Clear Separation between Active and Sham Treatment

RCT Key Outcome Measure – MADRS Change Score

> 3 x Reduction in Depressive Symptoms at Week 4

LOCF analysis of intent-to-treat population

Independent Study Reinforces Efficacy for TMS

Daily Left Prefrontal Transcranial Magnetic Stimulation Therapy for Major Depressive Disorder

- NIMH-sponsored Optimization of TMS (OPT-TMS) Study
 - Independent of industry
 - Rigorous RCT; active sham-controlled (1:1 randomization), duration- adaptive design with 3 weeks of daily weekday treatment (fixed-dose phase) followed by continued blinded treatment for up to another 3 weeks in improvers
 - 190 patients treated at 4 premier academic sites
- Primary outcome measure: Percent Remission at 3 weeks
 - 4 x greater likelihood of achieving remission with active treatment vs sham treatment

NIMH Multi-Site OPT-TMS Study with Active Sham Control

N = 190; Odds ratio is 4.2
P < .015

Remission

Consistent Response and Remission Rates across a Broad Range of Treatment Resistance

1 in 2 Patients Respond, 1 in 3 Patients Achieve Remission

Naturalistic, Open Label Treatment Utilization and Outcomes Study

Patient reported outcomes (PHQ-9) were consistent with physician-rated outcomes

LOCF analysis of intent-to-treat population. CGI-S outcomes in acute phase.
PHQ-9 > 3-item Patient Health Questionnaire.

TMS Therapy is Cost Effective When Compared to Antidepressant Medication Use-As-Usual

Model Assumptions for Comparison of Treatments over One Year of Care:

TMS Therapy
- TMS: Total utilization, 60 sessions/yr
- Reimbursement Cost Assumption: US $300/treatment
- Follow Up: Medication – monotherapy maintenance
- Lost time to attend TMS treatment sessions included in the model

Antidepressant Medication Management As-Usual
- Efficacy as described in STAR*D study outcomes (Levels 2 and 3)
- Costs for Medications (avg. wholesale price, including generic)
- Includes cost of physician visits for medication management

TMS Represents a Cost Saving over Treatment-As-Usual

- TMS represents a cost savings per patient per year compared to current standard of care:
 - US $1123
 - Without productivity and work loss costs included in the model (Payer Perspective)
 - US $7621
 - With productivity and work loss costs included in the model (Employer Perspective)

Annual Estimated Cost Savings with TMS as a Covered Benefit for a Mid-Sized Payer

Annual Cost Savings in Millions ($)

TMS Therapy in the Care Continuum

Change in HAM-D Measured Weekly

Response and Remission Rates for dTMS and Sham Groups at the End of Week 5 and Week 16

Antidepressant Effect of dTMS in Relation to the Number of Failed Pharmacotherapy Trials
Percentage of Patients Achieving Response or Remission for 0%, 0% to 30%, and > 30% of the Total Time in the Study of dTMS and Sham Groups

Mean HAM-D-17 Scores for the 80% rTMS, 110% rTMS, and Sham Groups at Timepoints throughout the Study

Mean MADRS Scores for the 80% rTMS, 110% rTMS, and Sham Groups at Timepoints throughout the Study

TMS Therapy Modulates Discrete Deep Brain Regions

TMS Modulates EEG Gamma Frequency in Distributed Brain Regions

Long-Term Treatment Outcomes of TMS in Naturalistic Setting

• 257 patients with medication-resistant unipolar depression received TMS and followed post-treatment for 52 weeks
• At the end of acute treatment 120 patients met criteria for either response or remission. Of those, 75 (62.5%) met response criteria throughout the follow-up period
• Of the entire cohort, 93 patients (36.2%) received reintroduction of TMS at some point during the 52-week follow up. Average number of TMS days was 16.2 days
Need for Maintenance rTMS

✓ In principle, the best way to maintain benefit would be rTMS sessions
✓ Options include transition back to ADM or rTMS sessions at reduced frequency
✓ Maintenance ECT may be a model in this regard
✓ Very small amount of data with maintenance rTMS

ADM = antidepressant medication.

No Efficacy/Effectiveness Gap

• 307 real-world US patients, on medication, 58% response, 37% remission, average 28 sessions
• 100 patients, U Penn practice model, 50% response, 25% remission

Failure!

Despite 2 decades of research
• We still largely use the initial approximations (marginally refined)
• We have not achieved the same remission rates as ECT
• We do not understand the LD50 or upper safety limit of dose
• We do not understand, fully, the translational neurobiology (neural mechanisms) of how TMS acts to get patients undepressed

TMS and Postoperative Pain

RCT, 20 Gastric Bypass Patients, L DLPFC, 20 minutes, 10 Hz, 100% rMT

One rTMS Session Cuts Cumulative Morphine Use by 40%

TMS Anti-Suicide Study

• High dose, 3-day adjunctive TMS study on inpatients admitted for suicidal ideation
• Randomized, sham-controlled
• N = 45, 2 sites – Ralph H. Johnson VA Medical Center, Walter Reed National Military Medical Center
• 2 years
• 18,000 stimuli/day, 54,000 total

Active TMS Significantly Reduced Suicidal Ideation

Beck Suicide Scale

Future Applications

<table>
<thead>
<tr>
<th>Psychiatry</th>
<th>Neurology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizophrenia</td>
<td>Stroke rehab</td>
</tr>
<tr>
<td>Bipolar depression</td>
<td>Chronic pain</td>
</tr>
<tr>
<td>PTSD</td>
<td>Trigeminal neuralgia</td>
</tr>
<tr>
<td>OCD</td>
<td>Headache</td>
</tr>
</tbody>
</table>

Preliminary human data suggest the potential application of TMS in these conditions

PTSD = posttraumatic stress disorder; OCD = obsessive-compulsive disorder; ADHD = attention-deficit/hyperactivity disorder.

Future Applications

<table>
<thead>
<tr>
<th>Psychiatry</th>
<th>Neurology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizophrenia</td>
<td>Stroke rehab</td>
</tr>
<tr>
<td>Bipolar depression</td>
<td>Chronic pain</td>
</tr>
<tr>
<td>PTSD</td>
<td>Trigeminal neuralgia</td>
</tr>
<tr>
<td>OCD</td>
<td>Headache</td>
</tr>
<tr>
<td>ADHD</td>
<td>Tinnitus</td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td></td>
</tr>
</tbody>
</table>

Future Applications

• Stroke rehab
• Chronic pain
• Trigeminal neuralgia
• Headache
• ADHD
• Tinnitus
• Epilepsy
• Parkinson’s disease

Future Applications

Future Applications

Key Take-Aways

• Early rTMS trials were flawed in that they were inconsistent in the frequency and number of treatments given
• More recent studies have shown that rTMS is equal to, if not superior to pharmacotherapy for TRD
• A very recent study has demonstrated that high dose, 3-day adjunctive rTMS reduces suicidal ideation

Further Reading

Further Reading

Further Reading

Practical Discussion & Conclusions #1

1. Which patients are most likely to benefit from TMS in clinical practice?
 – Per FDA guidelines, adults patients who have failed 1 antidepressant medication at or above the minimal effective dose and duration in the current episode
 – Patients must be free of seizure disorders and metallic implants on or near the head (Examples include cochlear implants, electrodes/stimulators, aneurysm clips and coils, bullet fragments, jewelry, and hair barrettes)
 – On the market and what makes them different? What about the economic differences and what about reimbursement?

Practical Discussion & Conclusions #1 (Continued)

– Per insurance guidelines, adults patients with moderate or severe MDD diagnosis who have failed 2 antidepressants and 2 medication augmentation therapies (TRD)
– Patients must be free of seizure disorders and metallic implants on or near the head (Examples include cochlear implants, electrodes/stimulators, aneurysm clips and coils, bullet fragments, jewelry, and hair barrettes)
Practical Discussion & Conclusions #2

2. Should I start my own TMS practice?
 - A good estimate of startup cost for equipment and space requirements ranges between $100,000 to $150,000
 - Additional monies for staff cost must be considered as well (TMS coordinator, TMS treater, billing specialist)
 - Insurance coverage varies state to state, as do reimbursement rates
 - Medicare is the only carrier that covers nationally

Practical Discussion & Conclusions #3

3. What are the approved rTMS devices and how do I find them?
 - NeuroStar TMS Therapy – www.neurostar.com or call 1-877-600-7555
 - Brainsway – www.brainsway.com/us or call 1-844-386-7001